If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+14u=-1
We move all terms to the left:
u^2+14u-(-1)=0
We add all the numbers together, and all the variables
u^2+14u+1=0
a = 1; b = 14; c = +1;
Δ = b2-4ac
Δ = 142-4·1·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-8\sqrt{3}}{2*1}=\frac{-14-8\sqrt{3}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+8\sqrt{3}}{2*1}=\frac{-14+8\sqrt{3}}{2} $
| -2+u=5 | | 5(0x-8)=-20 | | 5(10x-8)=-20 | | 5(-5x-8)=-20 | | (6/(y^2-9y+8))-(1/(y-8))=1/(4y-4) | | 36+0.35x=2(27+0.85x) | | -5y^2+41y-36=0 | | 12z-9-10z+3-8z=z-9+3z+10-120z | | 7a-2+6a+4=67 | | -9=-11+a/8 | | 6r-3=213 | | 16^x+4=64^3x-5 | | 8x-3=-339 | | 7q-4=-88 | | 13=w-12/12 | | 0.2x+0.6(17-x)=5.8 | | 2a-3=59 | | -0.5(3x-3)=0.5(9-x) | | 7a+6=-127 | | 4t+5=121 | | 3x-15+18=2x+6 | | 294=(30+x)2·14 | | 5x+4+39=180 | | 0.06x+0.08(x+300)=80 | | 0.06x+0.09(x+4000)=1110 | | -6(k-7)-(-7k-7)=-9 | | 0.3x+0.8(30-x)=14.5 | | (z^2-2)(z^2+7)=0 | | V=-1800t+20,000 | | 6(y-5)=2(10-3y) | | -7x–9x=96 | | 9=-u/3+12 |